Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Biol ; 21(1): 237, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37904147

RESUMO

BACKGROUND: Melanin plays important roles in morphological development, survival, host-pathogen interactions and in the virulence of phytopathogenic fungi. In Verticillum dahliae, increases in melanin are recognized as markers of maturation of microsclerotia which ensures the long-term survival and stress tolerance, while decreases in melanin are correlated with increased hyphal growth in the host. The conserved upstream components of the VdCmr1-regulated pathway controlling melanin production in V. dahliae have been extensively identified, but the direct activators of this pathway are still unclear. RESULTS: We identified two genes encoding conserved C2H2-type zinc finger proteins VdZFP1 and VdZFP2 adjacent to VdPKS9, a gene encoding a negative regulator of both melanin biosynthesis and microsclerotia formation in V. dahliae. Both VdZFP1 and VdZFP2 were induced during microsclerotia development and were involved in melanin deposition. Their localization changed from cytoplasmic to nuclear in response to osmotic pressure. VdZFP1 and VdZFP2 act as modulators of microsclerotia melanization in V. dahliae, as confirmed by melanin biosynthesis inhibition and supplementation with the melanin pathway intermediate scytalone in albino strains. The results indicate that VdZFP1 and VdZFP2 participate in melanin biosynthesis by positively regulating VdCmr1. Based on the results obtained with yeast one- and two-hybrid (Y1H and Y2H) and bimolecular fluorescence complementation (BiFC) systems, we determined the melanin biosynthesis relies on the direct interactions among VdZFP1, VdZFP2 and VdCmr1, and these interactions occur on the cell walls of microsclerotia. Additionally, VdZFP1 and/or VdZFP2 mutants displayed increased sensitivity to stress factors rather than alterations in pathogenicity, reflecting the importance of melanin in stress tolerance of V. dahliae. CONCLUSIONS: Our results revealed that VdZFP1 and VdZFP2 positively regulate VdCmr1 to promote melanin deposition during microsclerotia development, providing novel insight into the regulation of melanin biosynthesis in V. dahliae.


Assuntos
Ascomicetos , Verticillium , Melaninas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Verticillium/genética , Dedos de Zinco , Doenças das Plantas/microbiologia
2.
Plant Dis ; 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580889

RESUMO

Liquidambar formosana Hance is widely planted in urban landscapes in China owing to its ornamental red leaves. In June 2020, a distinctive leaf spot disease was observed on L. formosana in Nanjing Forestry University, Jiangsu Province of China (32°4'49"N, 118°48'56"E). Approximately 61% (14 out of 23) of the trees displayed leaf spots. The diseased symptoms included irregularly distributed spots that showed black or dark brown, and occasionally with pale green halo. Two representative trees were selected for sampling and five leaves with typical symptoms were selected randomly for isolation. The tissues from the margin of the lesions (0.2 cm × 0.2 cm) were cut and disinfected in 1% sodium hypochlorite for 90 s, rinsed in sterile water twice for 30 s, and dried with sterile paper. Then, 20 tissues were incubated on 2% potato dextrose agar (PDA) supplemented with 100 mg/L Ampicillin Sodium and incubated in the dark at 25℃ for 4 days. Seventeen single-spore fungi were isolated from lesion tissues as described by Woudenberg et al. (2013). The colony morphology of 17 isolates was extremely similar, so 3 isolates (NFUA01, NFUA02, and NFUA03) were selected randomly for further study. Colonies on PDA were circular, gray, and slightly raised loose cotton mycelium, while the reverse side was olive green in the center with white margins. Conidiophores were brown, simple or branched, and produced numerous conidia in short chains. Conidia were obclavate or ellipsoid, brown, with 1-5 transverse septa and 0-3 longitudinal septa, and measured 7.1 to 32.5 × 3.3 to 13.3 µm (n=50). The morphological observations were consistent with the description of the genus Alternaria sp. (Woudenberg et al. 2013). Six gene fragments, including SSU, LSU, ITS, GAPDH, RPB2 and EF-1 region, were amplified and sequenced. The primers of six nuclear loci were used by NS1 / NS4((White et al. 1990), LSU1Fd (Crous et al. 2009)/ LR5 (Vilgalys & Hester 1990), V9G (De Hoog & Gerrits van den Ende 1998)/ ITS4 (White et al. 1990), gpd1 / gpd2 (Berbee et al. 1999), RPB2-5F2 / fRPB2-7cR (Liu et al. 1999), and EF1-728F / EF1-986R (Carbone & Kohn 1999). The sequences were submitted in GenBank (SSU, ON237470 to ON237472; LSU, ON237464 to ON237466; ITS, ON197354 to ON197356; GAPDH, ON237476 to ON237478; RPB2, ON237467 to ON237469; EF-1, ON237473 to ON237475). BLAST result showed that SSU, LSU, ITS, GAPDH, RPB2, and EF-1 sequences of NFUA01, NFUA02, and NFUA03 were identical to A. tenuissima at a high level (>99%, Table 1). A maximum likelihood and Bayesian posterior probability analysis were performed by IQtree v. 1.6.8 and Mr. Bayes v. 3.2.6 with the concatenated sequences (Guindon et al. 2010; Ronquist et al. 2012). The representative strains which selected for Phylogenetic analyses were chosen from the strains which mentioned by Woudenberg et al (2013) and obtained the sequences from NCBI. The concatenated sequences placed NFUA01, NFUA02 and NFUA03 in the clade of Alternaria tenuissima with a high confidence level (ML/BI= 100/1). A pathogenicity assay was done using isolate NFUA01 on 3-year-old L. formosana seedlings. L. formosana leaves were wounded by a sterilized needle (0.5-mm-diam), and inoculated with spore suspension (106 conidia/mL), and L. formosana leaves inoculated with sterile water were used as the control. Each treatment had 5 leaves, and incubated at 25℃ under high moisture conditions. The experiments were conducted three times. Seven days after inoculation, leaves inoculated with spore suspension showed brown leaf blights resembling the original disease symptoms, whereas the control remained healthy. The fungus was reisolated from the lesions and was confirmed as A. tenuissima based on morphologically characteristics and ITS sequence analysis. To our knowledge, this is the first report of A. tenuissima associated with leaf blight on L. formosana. The finding provides clear pathogen information for further evaluation of the disease control strategies.

3.
J Fungi (Basel) ; 9(4)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37108943

RESUMO

European hornbeam (Carpinus betulus L.) is widely planted in landscaping. In October 2021 and August 2022, leaf spot was observed on C. betulus in Xuzhou, Jiangsu Province, China. To identify the causal agent of anthracnose disease on C. betulus, 23 isolates were obtained from the symptomatic leaves. Based on ITS sequences and colony morphology, these isolates were divided into four Colletotrichum groups. Koch's postulates of four Colletotrichum species showed similar symptoms observed in the field. Combining the morphological characteristics and multi-gene phylogenetic analysis of the concatenated sequences of the internal transcribed spacer (ITS) gene, Apn2-Mat1-2 intergenic spacer (ApMat) gene, the calmodulin (CAL) gene, glyceraldehyde3-phosphate dehydrogenase (GAPDH) gene, Glutamine synthetase (GS) gene, and beta-tubulin 2 (TUB2) genes, the four Colletotrichum groups were identified as C. gloeosporioides, C. fructicola, C. aenigma, and C. siamense. This study is the first report of four Colletotrichum species causing leaf spot on European hornbeam in China, and it provides clear pathogen information for the further evaluation of the disease control strategies.

4.
Plants (Basel) ; 12(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36903933

RESUMO

As a famous street tree, camphor (Cinnamomum camphora) is widely planted worldwide. However, in recent years, camphor with root rot was observed in Anhui Province, China. Based on morphological characterization, thirty virulent isolates were identified as Phytopythium species. Phylogenetic analysis of combined ITS, LSU rDNA, ß-tubulin, coxI, and coxII sequences assigned the isolates to Phytopythium vexans. Koch's postulates were fulfilled in the greenhouse, and the pathogenicity of P. vexans was determined by root inoculation tests on 2-year-old camphor seedlings; the symptoms of indoor inoculation were consistent with those in the field. P. vexans can grow at 15-30 °C, with an optimal growth temperature of 25-30 °C. The results of fungicide sensitivity experiments indicated that P. vexans was the most sensitive to metalaxyl hymexazol, which may be a useful idea for the future prevention and control management of P.vexans. This study provided the first step for further research on P. vexans as a pathogen of camphor, and provided a theoretical basis for future control strategies.

5.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36835582

RESUMO

Hyphantria cunea is a globally distributed quarantine plant pest. In a previous study, the Cordyceps javanica strain BE01 with a strong pathogenic effect on H. cunea was identified, and overexpression of the subtilisin-like serine protease CJPRB of this strain was found to accelerate the death of H. cunea (previous research results). In this study, the active recombinant CJPRB protein was obtained through the Pichia pastoris expression system. It was found that CJPRB protein administration to H. cunea via infectation, feeding and injection was able to induce changes in protective enzymes, including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and polyphenol oxidase (PPO), and the expression of immune defense-related genes in H. cunea. In particular, CJPRB protein injection induced a more rapid, widespread and intense immune response in H. cunea compared to the other two treatment methods. The results suggest that the CJPRB protein may play a role in eliciting a host immune response during infectation by C. javanica.


Assuntos
Mariposas , Animais , Mariposas/genética , Subtilisinas
6.
J Fungi (Basel) ; 9(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36675892

RESUMO

Pinus bungeana, an endangered and native coniferous tree species in China, has considerable timber and horticulture value. However, little is known about needle diseases in P. bungeana. A needle blight of P. bungeana has been observed in Hebei Province, China. P. bungeana inoculated with mycelial plugs of fungal isolates presented symptoms similar to those observed under field conditions. Ten virulent fungal isolates were identified as a small-spored Alternaria species based on morphological observations. Maximum likelihood and Bayesian phylogenetic analyses carried out with multilocus sequence typing of eight regions (SSU, LSU, ITS, gapdh, tef1, Alt a 1, endoPG, OPA10-2) assigned the pathogen to Alternaria alternata. This is the first report of A. alternata causing needle blight on P. bungeana in China.

7.
BMC Microbiol ; 23(1): 10, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627592

RESUMO

Endophytic bacteria are an important biological control for nematodes. We isolated the nematicidal Bacillus cereus NJSZ-13 from healthy Pinus elliottii trunks. Bioassay experiments showed killing of all tested nematodes by proteins from the NJSZ-13 culture filtrate within 72 h. Degradation of the nematode cuticles was observed, suggesting the action of extracellular bacterial enzymes. The responsible protease was purified by ammonium sulfate precipitation, hydrophobic interaction chromatography, ion-exchange chromatography, and SDS-PAGE. The protease had a molecular weight of 28 kDa and optimal activity at 55 °C and pH 9, indicating an alkaline protease. The study suggests the potential for using this B. cereus NJSZ-13 strain protease to prevent pinewood nematode infection.


Assuntos
Nematoides , Pinus , Animais , Bacillus cereus/metabolismo , Fatores de Virulência , Peptídeo Hidrolases/metabolismo , Nematoides/microbiologia
8.
Front Microbiol ; 13: 972425, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118242

RESUMO

Cordyceps javanica has promising application prospects as an entomopathogenic fungus with a wide range of hosts. To enhance the virulence of C. javanica, a polyethylene glycol (PEG)-mediated protoplast genetic transformation system was constructed. Strains overexpressing the subtilisin-like protease genes CJPRB and CJPRB1 and the tripeptidyl peptidase gene CJCLN2-1 were constructed with this system, and the effects of these strains on Hyphantria cunea were tested. The aminoglycoside G418 was used at 800 µg ml-1 to screen the transformants. C. javanica hyphae were degraded with an enzyme mixture to obtain protoplasts at 1.31 × 107 protoplasts ml-1. The transformation of 2 µg of DNA into 1,000 protoplasts was achieved with 20% PEG2000, and after 6 h of recovery, the transformation efficiency was 12.33 ± 1.42 transformants µg-1 plasmid. The LT50 values of CJPRB, CJPRB1, and CJCLN2-1-overexpressing C. javanica strains were 1.32-fold, 2.21-fold, and 2.14-fold higher than that of the wild-type (WT) strain, respectively. The three overexpression strains showed no significant differences from the WT strain in terms of colony growth, conidial yield, and conidial germination rate. However, the infection rate of the CJPRB1 strain was faster than that of the WT strain, with infection occurring within 4-5 days. The CJCLN2-1 strain had a significantly higher mortality rate than the WT strain within 4-10 days after infection. A C. javanica genetic transformation system was successfully constructed for the first time, and an overexpression strain exhibited enhanced virulence to H. cunea compared with the WT strain.

9.
Int J Mol Sci ; 23(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36142710

RESUMO

Pine wilt disease (PWD) is a global quarantine disease of forests that mainly affects Pinaceae species. The disease spreads rapidly. Once infected, pine trees have an extremely high mortality rate. This paper provides a summary of the common techniques used to detect PWD, including morphological-, molecular-, chemical- and physical-based methods. By comprehending the complex relationship among pinewood nematodes, vectors and host pine trees and employing the available approaches for nematode detection, we can improve the implementation of intervention and control measures to effectively reduce the damage caused by PWD. Although conventional techniques allow a reliable diagnosis of the symptomatic phase, the volatile compound detection and remote sensing technology facilitate a rapid diagnosis during asymptomatic stages. Moreover, the remote sensing technology is capable of monitoring PWD over large areas. Therefore, multiple perspective evaluations based on these technologies are crucial for the rapid and effective detection of PWD.


Assuntos
Pinus , Rabditídios , Animais
10.
Front Plant Sci ; 13: 933484, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845688

RESUMO

Cyclocarya paliurus is an endemic Chinese tree species with considerable medicinal, timber, and horticultural value. The anthracnose disease of C. paliurus is caused by the fungal pathogen Colletotrichum fructicola, which results in great losses in yield and quality. Here, resistance evaluation of six cultivars of C. paliurus exhibited varying degrees of resistance to C. fructicola infection, where Wufeng was the most resistant and Jinggangshan was the most susceptive. Physiological measurements and histochemical staining assays showed that the Wufeng cultivar exhibits intense reactive oxygen species accumulation and defense capabilities. A multiomics approach using RNA sequencing and metabolome analyses showed that resistance in C. paliurus (Wufeng) is related to early induction of reprogramming of the flavonoid biosynthesis pathway. In vitro antifungal assays revealed that the flavonoid extracts from resistant cultivars strongly inhibited C. fructicola hyphal growth than susceptible cultivars. Relative gene expression analysis further demonstrated the pivotal antifungal role of C. paliurus flavonoids in targeting Colletotrichum appressorium formation. Together, these results represent a novel resistance mechanism of C. paliurus against anthracnose through the reprogramming of flavonoids, which will lay a foundation for breeding anthracnose-resistant varieties and the application of flavonoid extraction of C. paliurus as a natural antifungal treatment.

11.
BMC Biol ; 20(1): 125, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35637443

RESUMO

BACKGROUND: During the disease cycle, plant pathogenic fungi exhibit a morphological transition between hyphal growth (the phase of active infection) and the production of long-term survival structures that remain dormant during "overwintering." Verticillium dahliae is a major plant pathogen that produces heavily melanized microsclerotia (MS) that survive in the soil for 14 or more years. These MS are multicellular structures produced during the necrotrophic phase of the disease cycle. Polyketide synthases (PKSs) are responsible for catalyzing production of many secondary metabolites including melanin. While MS contribute to long-term survival, hyphal growth is key for infection and virulence, but the signaling mechanisms by which the pathogen maintains hyphal growth are unclear. RESULTS: We analyzed the VdPKSs that contain at least one conserved domain potentially involved in secondary metabolism (SM), and screened the effect of VdPKS deletions in the virulent strain AT13. Among the five VdPKSs whose deletion affected virulence on cotton, we found that VdPKS9 acted epistatically to the VdPKS1-associated melanin pathway to promote hyphal growth. The decreased hyphal growth in VdPKS9 mutants was accompanied by the up-regulation of melanin biosynthesis and MS formation. Overexpression of VdPKS9 transformed melanized hyphal-type (MH-type) into the albinistic hyaline hyphal-type (AH-type), and VdPKS9 was upregulated in the AH-type population, which also exhibited higher virulence than the MH-type. CONCLUSIONS: We show that VdPKS9 is a powerful negative regulator of both melanin biosynthesis and MS formation in V. dahliae. These findings provide insight into the mechanism of how plant pathogens promote their virulence by the maintenance of vegetative hyphal growth during infection and colonization of plant hosts, and may provide novel targets for the control of melanin-producing filamentous fungi.


Assuntos
Policetídeo Sintases , Verticillium , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Melaninas/metabolismo , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Metabolismo Secundário , Verticillium/metabolismo , Virulência
12.
Front Microbiol ; 13: 852571, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283850

RESUMO

Verticillium dahliae is a destructive soil-borne pathogen of many economically important dicots. The genetics of pathogenesis in V. dahliae has been extensively studied. Spt-Ada-Gcn5 acetyltransferase complex (SAGA) is an ATP-independent multifunctional chromatin remodeling complex that contributes to diverse transcriptional regulatory functions. As members of the core module in the SAGA complex in Saccharomyces cerevisiae, Ada1, together with Spt7 and Spt20, play an important role in maintaining the integrity of the complex. In this study, we identified homologs of the SAGA complex in V. dahliae and found that deletion of the Ada1 subunit (VdAda1) causes severe defects in the formation of conidia and microsclerotia, and in melanin biosynthesis and virulence. The effect of VdAda1 on histone acetylation in V. dahliae was confirmed by western blot analysis. The deletion of VdAda1 resulted in genome-wide alteration of the V. dahliae transcriptome, including genes encoding transcription factors and secreted proteins, suggesting its prominent role in the regulation of transcription and virulence. Overall, we demonstrated that VdAda1, a member of the SAGA complex, modulates multiple physiological processes by regulating global gene expression that impinge on virulence and survival in V. dahliae.

13.
Pest Manag Sci ; 78(3): 1213-1226, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34839581

RESUMO

BACKGROUND: Bursaphelenchus xylophilus, the pinewood nematode, kills millions of pine trees worldwide every year, and causes enormous economic and ecological losses. Despite extensive research on population variation, there is little understanding of the population-wide variation spectrum in China. RESULTS: We sequenced an inbred B. xylophilus strain using Pacbio+Illumina+Bionano+Hi-C and generated a chromosome-level assembly (AH1) with six chromosomes of 77.1 Mb (chromosome N50: 12 Mb). The AH1 assembly shows very high continuity and completeness, and contains novel genes with potentially important functions compared with previous assemblies. Subsequently, we sequenced 181 strains from China and the USA and found ~7.8 million single nucleotide polymorphisms (SNPs). Analysis shows that the B. xylophilus population in China can be divided into geographically bounded subpopulations with severe cross-infection and potential migrations. In addition, distribution of B. xylophilus is dominated by temperature zones while geographically associated SNPs are mainly located on adaptation related GPCR gene families, suggesting the nematode has been evolving to adapt to different temperatures. A machine-learning based epidemic tracking method has been established to predict their geographical origins, which can be applied to any other species. CONCLUSION: Our study provides the community with the first high-quality chromosome-level assembly which includes a comprehensive catalogue of genetic variations. It provides insights into population structure and effective tracking method for this invasive species, which facilitates future studies to address a variety of applied, genomic and evolutionary questions in B. xylophilus as well as related species.


Assuntos
Genética Populacional , Pinus , Rabditídios , Animais , China , Cromossomos , Genoma Helmíntico , Pinus/parasitologia , Rabditídios/genética , Sequenciamento Completo do Genoma
14.
Plant Dis ; 2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34058842

RESUMO

American sweetgum (Liquidambar styraciflua L.) is a forest plant native to North America, which has been introduced into other countries due to its ornamental and medicinal values. In June 2019, symptoms of leaf spots on sweetgum were observed in a field (5 ha) located in Xuzhou, Jiangsu Province, China. On this field, approximately 45% of 1,000 trees showed the same symptoms. Symptoms were observed showing irregular or circular dark brown necrotic lesions approximately 5 to 15 mm in diameter with a yellowish margin on the leaves. To isolate the pathogen, diseased leaf sections (4×4mm) were excised from the margin of the lesion, surface-sterilized with 0.1% NaOCl for 90 s, rinsed 4 times in sterile distilled water, air dried and then transferred on potato dextrose agar (PDA) medium at 25°C in the dark. Pure cultures were obtained by monospore isolation after subculture. Ten purified isolates, named FXI to FXR, were transferred to fresh PDA and incubated as above to allow for morphological and molecular identification. After 7 days, the aerial mycelium was abundant, fluffy and exhibited white to greyish-green coloration. The conidia were dark brown or olive, solitary or produced in chains, obclavate, with 1 to 15 pseudosepta, and measured 45 to 200µm  10 to 18µm. Based on morphological features, these 10 isolates were identified as Corynespora cassiicola (Ellis et al. 1971). Genomic DNA of each isolate was extracted from mycelia using the cetyltrimethylammonium bromide (CTAB) method. The EF-1α gene and ITS region were amplified and sequenced with the primer pairs rDNA ITS primers (ITS4/ITS5) (White et al. 1990) and EF1-728F/EF-986R (Carbone et al.1999) respectively. The sequences were deposited in GenBank. BLAST analysis revealed that the ITS sequence had 99.66% similarity to C. cassiicola MH255527 and that the EF-1α sequence had 100% similarity to C. cassiicola KX429668A. maximum likelihood phylogenetic analysis based on EF-1α and ITS sequences using MEGA 7 revealed that ten isolates were placed in the same clade as C. cassiicola (Isolate: XQ3-1; accession numbers: MH572687 and MH569606, respectively) at 98% bootstrap support. Based on the morphological characteristics and phylogenetic analyses, all isolates were identified as C. cassiicola. For the pathogenicity test, a 10 µl conidial suspension (1×105 spores/ml) of each isolate was dripped onto healthy leaves of 2-year-old sweetgum potted seedlings respectively. Leaves inoculated with sterile water served as controls. Three plants (3 leaves per plant) were conducted for each treatment. The experiment was repeat twice. All seedlings were enclosed in plastic transparent incubators to maintain high relative humidity (90% to 100%) and incubated in a greenhouse at 25°C with a 12-h photoperiod. After 10 days, leaves inoculated with conidial suspension of each isolate showed symptoms of leaf spots, similar to those observed in the field. Control plants were remained healthy. In order to reisolate the pathogen, surface-sterilized and monosporic isolation was conducted as described above. The same fungus was reisolated from the lesions of symptomatic leaves, and its identity was confirmed by molecular and morphological approaches, thus fulfilling Koch's postulates. Chlorothalonil and Boscalid can be used to effectively control Corynespora leaf spot (Chairin T et al.2017). To our knowledge, this is the first report of leaf spot caused by C. cassiicola on L. styraciflua in China.

15.
Plant Dis ; 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33834853

RESUMO

European hornbeam (Carpinus betulus L.) has been used as an important ornamental species for urban landscaping since the Italian Renaissance (Rocchi et al. 2010). In May 2019, 15% of 3000 C. betulus trees with wilted leaves and root rot were observed in a field (about 26 ha) in Pizhou, Jiangsu Province, China. Internal discoloration of the stem began with brown to black discoloration of the vascular system and gradually spread to inward areas. Roots and stems from symptomatic plants were washed free of soil, surface sterilized with 0.8% NaOCl, rinsed three times in sterile H2O, and blotted dry with a paper towel. Small segments (0.5-cm-long) were cut from the discolored vascular tissues, and then put on potato dextrose agar (PDA) at 25°C in darkness. After 4 days, fungal colonies were observed on the PDA. Pure cultures were obtained by monosporic isolation, and 9 morphologically similar fungal isolates (EJ-1 to EJ-9) were obtained. All purified cultures were incubated on PDA at 25°C in darkness as the initial isolation. Colonies of the 9 isolates on PDA displayed entire margins and showed abundant pink aerial mycelia initially and turned to light violet with age. Microconidia were elliptical or oval in shape, 0 septate, (5.2-)8.7(-12.5) × (3.5-)3.6(-5.5) µm. Macroconidia were falciform, 0-4 septate, and straight to slightly curved with a notched foot cell, (17.1-)20.5(-28.4) × (3.8-)4.1(-4.6) µm. These morphological characteristics resemble Fusarium oxysporum (Leslie and Summerell 2006). Genomic DNA of each isolate was extracted from mycelia using a CTAB method (Mo¨ller et al. 1992). The RPB2, TEF1 and cmdA genes were amplified and sequenced with the primers 5f2/7c (Liu et al. 2000), EF-1Ha/EF-2Tb (Carbone and Kohn 1999) and Cal228F/CAL2Rd (Groenewald et al. 2013), respectively. The sequences were deposited in GenBank (Table 1). A maximum likelihood phylogenetic analysis based on RPB2, TEF1 and cmdA sequences using MEGA7 revealed that the isolates were placed in the F. oxysporum species complex with 98% bootstrap support. Based on the morphological and molecular characters, all 9 isolates were identified as F. oxysporum. A pathogenicity experiment was conducted using 30 2-year-old C. betulus seedlings potted in sterile peat, 27 for inoculation (3 replicate plants per isolate) and 3 for a negative control. The treated plants were planted in the peat mixed with 50 ml of a conidial suspension of each isolate respectively. The negative control was inoculated with sterilized water. Conidia were harvested from colonized plates of PDA using sterilized water and adjusted to a concentration of 1×107 conidia/ml. All 30 seedlings were incubated in a greenhouse at 25°C with a relative humidity of 80% and a 12-h photoperiod. The inoculated seedlings displayed wilt symptoms within 30 to 40 days, and eventually died within 75 to 85 days after inoculation. Control plants remained symptomless. F. oxysporum was successfully reisolated from the vascular tissues of symptomatic plants, and sequences of RPB2, TEF1 and cmdA of re-isolates matched those of the original isolates. No pathogen was isolated from the tissues of control plants. The experiment was repeat twice with the similar results, fulfilling Koch's postulates. F. oxysporum is an important soil-borne pathogen and can cause disease in many economic plants, such as yellowwood (Graney et al. 2016), hickory (Zhang et al. 2015) and larch (Rolim et al. 2020). To our knowledge, this is the first report of wilt on C. betulus caused by F. oxysporum in China.

16.
Plant Dis ; 105(10): 2955-2963, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33779257

RESUMO

Leaf spot and dieback were observed on box elder (Acer negundo) grown in a nursery in Tai'an city, Shandong Province, China, in 2019, with a disease incidence of 86%. The incidences of Exserohilum rostratum isolation were 75% from the shoots and 66.6% from the leaves of field-infected plants. Isolates were identified at the species level on the basis of morphological characteristics and through phylogenetic analysis of concatenated partial sequences of the internal transcribed spacer (ITS) region and cam, gapdh, tef1, rpb2, tub2, and his genes from the Exserohilum isolates. The effects of temperature on the mycelial growth of the Exserohilum rostratum isolates were also characterized. In greenhouse tests, seedlings inoculated with the pathogen exhibited systemic symptoms similar to those observed in the field. In pathogenicity experiments on shoots, wounded seedlings were observed to be blighted, suggesting that leaf spot and dieback may develop into more severe blight or dieback when high winds, sudden temperature decreases, or insect infestations occur. To our knowledge, this is the first report of dieback and leaf spot caused by E. rostratum on a species of A. negundo.


Assuntos
Acer , Ascomicetos , Ascomicetos/genética , Filogenia , Doenças das Plantas
17.
PLoS One ; 16(2): e0247309, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33630914

RESUMO

Phosphate-solubilizing bacteria (PSB) have beneficial effects on plant health and soil composition. To date, studies of PSB in soil have largely been performed under field or greenhouse conditions. However, less is known about the impact of introducing indigenous PSB in the field, including their effects on the local microbial community. In this study, we conducted greenhouse and field experiments to explore the effects of the addition of indigenous PSB on the growth of Chenmou elm (Ulmus chenmoui) and on the diversity and composition of the bacterial community in the soil. We obtained four bacterial isolates with the highest phosphate-solubilizing activity: UC_1 (Pseudomonas sp.), UC_M (Klebsiella sp.), UC_J (Burkholderia sp.), and UC_3 (Chryseobacterium sp.). Sequencing on the Illumina MiSeq platform showed that the inoculated PSB did not become the dominant strains in the U. chenmoui rhizosphere. However, the soil bacterial community structure was altered by the addition of these PSB. The relative abundance of Chloroflexi decreased significantly in response to PSB application in all treatment groups, whereas the populations of several bacteria, including Proteobacteria and Bacteroidetes, increased. Network analysis indicated that Chloroflexi was the most strongly negatively correlated with Proteobacteria, whereas Proteobacteria was strongly positively correlated with Bacteroidetes. Our findings indicate that inoculation with PSB (UC_1, UC_M, UC_J, and UC_3) can improve the growth of U. chenmoui and regulate its rhizosphere microbial community. Therefore, inoculation with these bacterial strains could promote the efficient cultivation and production of high-quality plant materials.


Assuntos
Microbiota/fisiologia , Fosfatos/metabolismo , Plantas/microbiologia , Ulmus/metabolismo , Inoculantes Agrícolas/metabolismo , Burkholderia/metabolismo , China , Proteobactérias/metabolismo , Rizosfera , Solo/química , Microbiologia do Solo
18.
Plant Dis ; 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33434040

RESUMO

American sweetgum (Liquidambar styraciflua L.) is an important tree for landscaping and wood processing. In recent years, leaf spots on American sweetgum with disease incidence of about 53% were observed in about 1200 full grown plants in a field (about 8 ha) located in Pizhou, Jiangsu Province, China. Initially, dense reddish-brown spots appeared on both old and new leaves. Later, the spots expanded into dark brown lesions with yellow halos. Symptomatic leaf samples from different trees were collected and processed in the laboratory. For pathogen isolation, leaf sections (4×4mm) removed from the lesion margin were surface sterilized with 75% ethanol for 20s and then sterilized in 2% NaOCl for 30s, rinsed three times in sterile distilled water, incubated on potato dextrose agar (PDA) at 25 °C in the darkness. After 5 days of cultivation, the pure culture was obtained by single spore separation. 6 isolate samples from different leaves named FXA1 to FXA6 shared nearly identical morphological features. The isolate FXA1 (codes CFCC 54675) was deposited in the China Center for Type Culture Collection. On the PDA, the colonies were light yellow with dense mycelium, rough margin, and reverse brownish yellow. Conidiophores (23-35 × 6-10 µm) (n=60) were solitary, straight to flexuous. Conidia (19-34 × 10-21 µm) (n=60) were single, muriform, oblong, mid to deep brown, with 1 to 6 transverse septa. These morphological characteristics resemble Stemphylium eturmiunum (Simmons 2001). Genomic DNA was extracted from mycelium following the CTAB method. The ITS region, gapdh, and cmdA genes were amplified and sequenced with the primers ITS5/ITS4 (Woudenberg et al. 2017), gpd1/gpd2 (Berbee et al. 1999), and CALDF1/CALDR2 (Lawrence et al. 2013), respectively. A maximum likelihood phylogenetic analysis based on ITS, gapdh and cmdA (accession nos. MT898502-MT898507, MT902342-MT902347, MT902336-MT902341) sequences using MEGA 7.0 revealed that the isolates were placed in the same clade as S. eturmiunum with 98% bootstrap support. All seedlings for pathogenicity tests were enclosed in plastic transparent incubators to maintain high relative humidity (90%-100%) and incubated in a greenhouse at 25°C with a 12-h photoperiod. For pathogenicity, the conidial suspension (105 spores/ml) of each isolate was sprayed respectively onto healthy leaves of L. styraciflua potted seedlings (2-year-old, 3 replicate plants per isolate). As a control, 3 seedlings were sprayed with sterile distilled water. After 7 days, dense reddish-brown spots were observed on all inoculated leaves. In another set of tests, healthy plants (3 leaves per plant, 3 replicate plants per isolate) were wound-inoculated with mycelial plugs (4×4mm) and inoculated with sterile PDA plugs as a control. After 7 days, brown lesions with light yellow halo were observed on all inoculation sites with the mycelial plugs. Controls remained asymptomatic in the entire experiment. The pathogen was reisolated from symptomatic tissues and identified as S. eturmiunum but was not recovered from the control. The experiment was repeated twice with the similar results, fulfilling Koch's postulates. S. eturmiunum had been reported on tomato (Andersen et al. 2004), wheat (Poursafar et al. 2016), garlic (L. Fu et al. 2019) but not on woody plant leaves. To our knowledge, this is the first report of S. eturmiunum causing leaf spot on L. styraciflua in the world. This disease poses a potential threat to American sweetgum and wheat in Pizhou.

19.
Insects ; 11(9)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32947929

RESUMO

Pine wilt disease was first discovered in Dongtang town, Liaoning Province, China, in 2017. However, no record of Monochamus alteratus existed in Fengcheng, where M. saltuarius is an indigenous insect, and no experimental evidence has thus far indicated that M. saltuarius can transport the Bursaphelenchus xylophilus in China. In this study, we investigated whether M. saltuarius is a vector of B. xylophilus in China. On the sixth day after eclosion, beetles began to transmit nematodes into the twigs. The transmission period of nematodes is known to be able to last for 48 days after beetle emergence. In laboratory experiments, M. saltuarius fed and transmitted B. xylophilus not only on pines but also on other non-Pinus conifers. The non-Pinus conifers preferred by M. saltuarius for feeding are Picea pungens, Picea asperata, and Abies fabri. The experimental results show that M. saltuarius functions as a vector of B. xylophilus in northeast China.

20.
Plant Dis ; 104(4): 1032-1040, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31999219

RESUMO

Cyclocarya paliurus, an important endangered plant in China, has considerable medicinal, timber, and horticultural value. However, little is known about diseases that affect its health. In recent years, stem canker diseases on C. paliurus have been observed frequently in newly established nurseries in Jiangsu Province, China. Symptomatic trees showed elliptical, sunken lesions on the bark, with internal discoloration, leading to enlarging cankers with delineated margins. Pathogenicity tests with fungi isolated from symptomatic samples reproduced typical canker symptoms on both detached branches and potted plants of C. paliurus. Moreover, conidia from pycnidia of isolate ZB-23 could also cause stem canker on C. paliurus. Through combined morphological observation and DNA sequences of ITS region, ß-tubulin, and translation elongation factor 1-α genes, the pathogen was identified as Botryosphaeria dothidea. Multigene maximum likelihood and maximum parsimony phylogenetic analyses further supported the identification of the pathogen. To our knowledge, this is the first report of B. dothidea causing stem canker on C. paliurus in China.


Assuntos
Ascomicetos , Doenças das Plantas , China , Filogenia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...